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Transport on weighted networks: When the correlations are independent of the degree
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Most real-world networks are weighted graphs with the weight of the edges reflecting the relative impor-
tance of the connections. In this work, we study nondegree dependent correlations between edge weights,
generalizing thus the correlations beyond the degree dependent case. We propose a simple method to introduce
weight-weight correlations in topologically uncorrelated graphs. This allows us to test different measures to
discriminate between the different correlation types and to quantify their intensity. We also discuss here the
effect of weight correlations on the transport properties of the networks, showing that positive correlations
dramatically improve transport. Finally, we give two examples of real-world networks (social and transport

graphs) in which weight-weight correlations are present.
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I. INTRODUCTION

Complex networks have proved to be useful tools to ex-
plore natural or man-made phenomena as diverse as the In-
ternet [1], human societies [2], transport patterns between
airports [3,4], or even metabolic reactions in the interior of
cells [5]. The vertices in the networks represent the elements
of the system and the edges the interactions between them.
The study of the topology of the network provides valuable
information on how the basic components interact [6-8].
While the existence or not of an edge is already informative,
in many cases, as those listed above, the interactions can
appear on different levels. The bandwidth between two serv-
ers on the Internet, for instance, is not a flat quantity equal
for all pairs; it depends on the importance of the servers as
well as on the traffic expected. This fact led to the introduc-
tion of weighted graphs as a more accurate way to describe
real networks [9,10]. Weighted graphs are complex networks
where the edges have a magnitude associated, a weight. The
weight accounts for the quality of a connection. The exis-
tence of a distribution of weights dramatically alters trans-
port properties of networks such as the geometry of the op-
timal paths [11-14], the spreading of diseases [15], or the
synchronizability of oscillators [16]. Most previous studies
have been carried out on networks with uncorrelated weights
on neighboring edges (those arriving at the same node) even
though most real cases possess correlation. Our aim here is
to check how the presence of correlations can influence these
results.

There may be several kinds of correlations in random
graphs [17]. Recently, it has been shown that the edge
weights in some real-world networks are related to other
properties of the graph such as the degree (the number of
connections a vertex has) [18-20]. The weights were found
to follow, on average, a power-law dependence on the de-
gree. Several theoretical mechanisms have been proposed to
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generate networks of this type [21]. In this case, a clear cor-
relation is introduced between the weight of neighboring
edges but one may wonder whether this is the only possibil-
ity for weight correlations. If not, which other structures are
possible? How can the correlations be quantitatively charac-
terized? And most importantly, which influence do they have
on the transport?

In this work, we address these questions. The organization
of the manuscript is as follows. In Sec. II, we present a
model that allows one to explore the different configurations
for weight correlations independently of other properties of
the network. Next, in Sec. III, we consider and evaluate dif-
ferent magnitudes to estimate the type and intensity of
weight-weight correlations. Section IV includes a study on
how the presence of weight correlations affects transport. In
Sec. V two examples of real-world networks showing this
type of correlation are discussed: the IMDB actor collabora-
tion network and the traffic network between U.S. airports.
And finally, we conclude and summarize in Sec. VL.

II. SIMPLE METHOD TO INTRODUCE
WEIGHT-WEIGHT CORRELATIONS

Let us start by defining a mathematical framework for the
weight correlations. From the point of view of an edge of
weight w with vertices with degree k and k' at its extremes,
the joint probability that its neighboring edges have a certain
weight is given by

P (Wowi, oo Wil oWy e W) (1)

These functions contain all the information about both de-
gree and weight distributions and correlations. However, a
situation in which a full hierarchy of such functions were
needed to characterize the network would be hard to control
from an analytical or numerical point of view. Therefore we
will focus here only on the simplest scenario. In the same
way the Markovian condition is a simplifying assumption for
stochastic processes, we will consider only correlations gen-
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erated by two-point joint probability functions Py (w,w’),
and among those, initially only the ones that are degree in-
dependent given by functions of the type P(w,w’).

In order to construct weighted networks along these lines,
we use the so-called Barabasi-Albert (BA) model [22],
where new nodes entering the network connect to old ones
with a probability proportional to their degree [23]. The net-
works generated by this model are scale-free [their degree
distribution reads as P, (k) ~k*], have no degree-degree cor-
relations, and their clustering coefficient (probability of find-
ing triangles) tends to zero when the system size tends to
infinity. All this makes them ideal null models to test corre-
lations between edge weights. Once the network is grown, a
joint probability distribution for the link weights P(w,w’)
and an algorithm for weight assignation are needed. With the
function P(w,w’) one can calculate the weight distribution
P(w)=fdw' P(w,w'), and the conditional probability of
having a weight w' provided that a neighboring link has a
weight w, P(w'|w)=P(w,w')/P(w). We start by choosing
an edge at random and giving it a weight obtained from
P(w). Then we move to the nodes at its extremes and assign
weights to the neighboring links. To do this, we follow a
recursive method: if the edge from which the node is ac-
cessed has a weight wy, the rest, wy,...,w,_;, are obtained
from the conditional distributions P( w;|w;_;). The recursion
is necessary to increase the variability in case of anticorrela-
tion (see below). If any of the links j already have a weight,
it remains without change and its value affects the subse-
quent edges j+1,...,k—1. We repeat this process until all
the edges of the network have a weight assigned [24].

For P(w,w'), we have considered different possibilities
but here we will focus only on the following three:

’ X+
Pi(w,w') = (s
’ XU
Py(w,w') = (WW’)HQ’
X
Pww)=—"—"—, 2
(w,w") (ww' +1)1* @

where X,=2%(1+a), X;=a?, and X_:az/zFl(a,a,l+a,
—1) are the normalization factors for the distributions on the
domain of weights (1,%), and ,F,( ) is the Gauss hypergeo-
metric function [25]. Without losing generality, we have
chosen these particular functional forms due to their analyti-
cal and numerical tractability. The distributions generated
by Egs. (2) asymptotically decay as P(w)~w™'"% The
reason to use power-law decaying distributions is that em-
pirical networks commonly show very wide weight distri-
butions that in a first approach can be modeled as power
laws (see Fig. 6 and Refs. [3-5,26]). We name the
functions as + (positively correlated), — (anticorrelated),
and U (uncorrelated) because the average weight (w)(w)
=[dw w P(w|w), obtained with the conditional probabili-
ties from a certain seed wy grows as (w),(wy)=(1+a
+wg)/a, decreases as (w)_(wg)=(a+1/wy)/(a—1) and
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FIG. 1. (Color online) Two possible cases in networks with
correlations in the link weight: (a) positively correlated nets and (b)
anticorrelated networks. The width of the line of the links represents
the value of the weight.

remains constant (w);=a/(a—1), respectively. This means
that in + networks the links of each node tend to be relatively
uniform in the weights [see Fig. 1(a)], with separate areas of
the graph concentrating the strong or the weak links, while in
the negative case, links with high and low weights are
heavily mixed.

From a numerical point of view, we have checked how the
variables to measure vary with the network size N. In the
following, most results are shown for N= 10°, which is big
enough to avoid significant finite size effects. For each value
of the exponent a [from Egs. (2)] and for each type of cor-
relation, we have averaged over more than 600 realizations.
Note that we use « as a control parameter for the strength of
the correlations. For high values of «, P(w) decays very fast
and the correlations become negligible; all links have almost
the same weight. When « decreases however, the higher mo-
ments of P(w) diverge and one would expect the correlations
to be more prominent.

III. MEASURES OF WEIGHT CORRELATIONS

After a look at the sketch of Fig. 1, the first estimator to
consider in order to estimate weight correlations is the stan-
dard deviation of the weights of the links arriving at each
node. If the weights are relatively homogeneous, the stan-
dard deviation will be lower compared with its counterpart in
a randomized instance of the graph. The opposite will hap-
pen if the correlations are negative as in Fig. 1(b). More
specifically, for a generic node of the network i, o,,(i) can be
defined as

G'i(l) = E (Wij - <W>;)2» (3)

Jjev(i)
where (i) is the set of neighbors of i and (w); is the mean
value of the weight of the links arriving at i. Once the devia-
tion is calculated for each node, an average can be taken over
the full network getting (o,,)=(1/N)Z;0,,(i). Then to evalu-

ate the effects of weight correlations, it is necessary to com-
pare the value of (a,),,, obtained for the original network
with that measured on uncorrelated graphs. It is, of course,
important that the statistical properties of such uncorrelated
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FIG. 2. (Color online) The rates X, (diamonds), Y,, and p
(circles) for the + distribution model as a function of a. The high-
lighted area encloses the resolution limit of the estimators. The rate
Y, is shown for several values of ¢: g=2 (squares), g=4 (up tri-
angles), and g=6 (down triangles).

graphs are as close as possible to those of the original graph.
The most accurate procedure consists in disordering only the
weights of the links of the original network. To do so, we
interchange the weight of each link with that of a randomly
selected edge preserving the weight distribution P(w) and the
network topology, i.e., degree distribution, degree-degree
correlation, clustering, etc., remain invariant. Once (o) is
estimated for the original graph and for an ensemble of
weight-reshuffled instances of it, the rate

S, = M& (4)
<(Tw>rand

can be calculated. If X,,>0, the weight correlations in the
original graph will be as in Fig. 1(b). If it is identically one,
there will be no weight correlations and if 2, <0 the corre-
lations will be as in Fig. 1(a). The behavior of X, for the
positive and negative models proposed in the previous sec-
tion is displayed in Fig. 2. The first thing to note is that
indeed, 3, can distinguish between the three cases. More-
over, it provides a first method to quantitatively estimate the
intensity of the weight correlations.

A similar result can be obtained with a magnitude that
was previously discussed in the literature [5,27]. Its name is
disparity and was introduced in the context of weighted
graphs by Barthélemy et al. as a way to estimate how homo-
geneous the weights of the links arriving at a vertex are. The
generalized disparity of node i, Y, (i), is defined as

Y (i) =" (5)

Si

where s, is the strength of 7, 5;=2 ¢, yw;;. If all the links of
a node have a similar weight, their value will be w=s/k, and
therefore the disparity decays as Y,(k) ~ 1/k%"!. On the other
hand, if the vertex strength is essentially due to the weight of
a single link, Y, (k) will tend to a constant. Typically instead
of a generalized Y 4» Most of the works in the literature has
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FIG. 3. (Color online) Plot of the disparity as a function of the
degree; the triplets represent the graphs generated using the + (blue
diamonds), the uncorrelated (red squares), and — (black circles)
distributions. Each triplet corresponds to a different value of «;
from bottom to top, =20, 1.5, 1.2, and 0.5. The straight line has
slope —1 and is meant as a guide to the eye. The triplets have been
shifted upwards to facilitate visibility. The inset shows the disparity
versus k for the U case and for the values of a from bottom to top,
a=20,2,1.5,12,1,and 0.5.

focused on Y,, for which is commonly reserved the name of
disparity. This latter magnitude can be related to o,, by the
following expression for each node i of the network:

0_2 .
SO 00~ G

where (w); is the average weight of the links of i and k; its
degree. An important question to mention here is that the
profiles of Y, (k) depend on the weight distribution, even for
completely uncorrelated graphs. Y, (i) provides information
on how different the weights of the links of i are but not on
whether that particular configuration is or is not a product of
randomness or correlations. The variation of Y,(k) with the
exponent of the weight distribution « for the uncorrelated U
model can be seen in the inset of Fig. 3. In the same figure,
we also show the behavior of Y,(k) for the other two models,
“+” and “-”, for a few values of the exponent a. As before,
in order to estimate the importance of the weight correla-
tions, the disparity of the correlated graph has to be com-
pared with that obtained from uncorrelated networks. To ex-
press this comparison in a single rate, we can take the
average of the disparity over all nodes of the network, (Y ),
and calculate

_ <Yg>orig
Yq_ <Yq>rand' (7)

The value of Y, for the positive model as a function of « is
displayed in Fig. 2. This magnitude is also able to discrimi-
nate between the different correlations.
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However, both X and Yq have resolution problems. As
can be seen in Fig. 2 for the positive model, if an area en-
closing the numeric error is set immediately below one, the
estimators E,Yq fall in turn relatively fast in that zone. The
weights of the links in the + model are continuous variables
and therefore they are always correlated. Although, as ex-
plained before, for higher values of « the effects of weight
correlations can be weaker but still until « is not infinite they
are not zero. An ideal estimator should be able to distinguish
the + model from a complete random configuration at very
high values of «. In this context, 3,, seems to be the worst
estimator. Y, is better than X, and improves the higher ¢
becomes. The reason for this behavior is that these magni-
tudes are not only estimating how wide the spectrum of val-
ues of w for a node is, they also supply information on the
shape of the distribution of those values. As an example, let
us consider a node with k links. The value of o, is higher if
k—1 of them have weight a and the remaining weight b,
o,,=|a—b|\k=1/\k, than if the distribution is more symmet-
ric, let us say, with half of them with w=a and the other half
with weight b, o,,=|a—b|/(2\2). The goal here is to study
how different the amplitude of the weight values is compared
with a random configuration of weights, hence the extra in-
formation contained in a,, or Y, can be neglected. An ideal
estimator for weight correlations only needs to consider the
interval |a—b|. Following this idea, we define the range for a
node i as

_ Wmax(i) - Wmin(i)

l Wmax(i) + Wmin(i) |

(8)

where w,(i) and wy,;,(i) are, respectively, the maximum
and minimum weights of the edges of i. The denominator is
a normalization factor to keep r; between zero and one. Note
that r has a similar behavior to Y, in the limit g —oe: if all
the weights are equal r=0, and also Yq~k1‘q—>0 if g— 0.
On the other hand, if the weight of link dominates the others
r—1,Y q—>1 too if g— . As before, to generate a correla-
tions estimator, the average of r;,(r), can be taken over all the
nodes of the network and contrasted with the equivalent
value obtained from a set of weight-reshuffled instances. We
will call p to the rate between these two quantities,

pP= <r>orig/<r>rand' ©)

If p<l, the network displays positive weight correlations.
The stronger they are, the smaller p becomes. Otherwise, if
p>1, the weights are anticorrelated. p=Y=2=1 is the limit
of uncorrelated networks. As can be seen in Fig. 2, p is a
much more acute estimator of weight correlations than Y, or
3. Hence, from now on we will present our results as a
function of it. The variation of p with « is displayed in Fig.
4 for the + and — models. The intensity of the correlations for
the + model grows when a— 0 (p, decreases for smaller @),
while for the negative case p_ initially grows, peaks around
a=2.5, and then tends to one again for smaller a.

Another question that we are now in a position to pose is
in what way a relation between weight and degree affects the
weight-weight correlations. As mentioned in the Introduc-
tion, networks of this kind may display quite different trans-
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FIG. 4. (Color online) In the main plot, the dependence of p on
the exponent « for the positively correlated graphs generated with
the + distribution of Eq. (2). In the inset, the same function but for
the graphs of the — distribution.

port properties from their unweighted counterparts
[13,15,19,28]. Usually, the weights of these networks are ob-
tained by means of a relation of the kind w;;~ (kk;)° [18].
The result is that provided that the degree is an a priori
characteristic that equally influences all the edges of a vertex,
the weight of the links is positively correlated. The networks
created in this way show correlations similar to our + model
(regardless of the sign of the exponent &) [29]. For instance,
for 6=+0.5 the value of p is in both cases p=0.832.

IV. TRANSPORT PROPERTIES

Let us focus now on the transport and how it varies with
the presence of weight-weight correlations. Several measures
have been proposed to study transport [13,30]. In this work
we will concentrate on the size and weight of the superhigh-
ways as recently introduced by Wu et al. [13]. If the edges of
an uncorrelated network are severed following an increasing
order from small to higher weights, the percolation threshold
is eventually reached. The remaining connected graph after
the process is over, the incipient percolation cluster (IIC) or
superhighways, holds most of the traffic of the original net-
work. Regarding this procedure, there are several questions
to mention. First, along this work we have assumed that
higher weights imply better transport properties. This is also
the case for the two empirical examples discussed below; the
weights represent the number of passengers in one network
and the number of collaborations done together in the other.
However, for some other graphs, the weights can mean
higher resistance to transport. And, therefore, the superhigh-
ways must be obtained with the same procedure but cutting
the links with highest weights first. In such circumstances,
the lower the total weight of the superhighway is, the better
the transport results.

Another question is that the percolation threshold depends
on the topological characteristics of the network. For uncor-
related undirected graphs, it is attained when in the process
of severing random links, the rate (k*)/(k) of the remaining
graph approaches two, (k*)/{ky=2 [30]. For directed net-
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works or networks with high clustering, the threshold does
obey different expressions [31]. In the next section, we will
further discuss this point as well as the numerical determina-
tion of the percolation threshold for our two empirical net-
works.

Finally, it is worth noting that this method to estimate
superhighways cannot be applied directly to networks with
weight correlations. If the high weight links are concentrated
in some areas of the graph, cutting the weak links is not
going to affect those areas. This can change the percolation
criterion, i.e., (k*)/{k)=2 cannot be used, although the per-
colation threshold that depends solely on the topology re-
mains the same as in an uncorrelated graph.

The goal in our case is to compare graphs with and with-
out weight correlations and to quantitatively estimate the ef-
fects of these correlations. The method used in practice is to
disorder the weights of the links of each correlated network.
Then we estimate the superhighways of the randomized
graphs and measure how many edges must be cut on average
to attain the percolation threshold. Reaching the percolation
may have some numerical problems [32] so the process of
reshuffling the weights must be repeated several times. Next,
we cut the same number of links in the correlated network
(again going from lower to higher values of w) and compare
the size and the weight of the biggest remaining connected
cluster (Wsphgw) with the average of those found for the ran-
domized graphs. In this way, we obtain

QO nghgw(orig)

sphew = <Wsphgw(rand)> |

Number nodes in superhighway (orig)

S = .
sphgw (Number nodes in superhighway (rand))

(10)

The results, displayed in Fig. 5, show that, in general, posi-
tive correlations play a decisive role on the value of W,y
increasing it by orders of magnitude. The smaller is p with
respect to the unit, the stronger the effect of the weight cor-
relations on the transport becomes. This phenomenon may
be understood by keeping the analogy with the roads: the
transport improves if the highways are connected together
forming a communication backbone as large as possible.
Anticorrelated networks, on the other hand, exhibit smaller
superhighways than their randomized counterparts although
the effect is subtle.

So far we have discussed models for which the weight
correlations are independent of other structural factors. In
general, there may be other aspects influencing the transport
properties of a graph. If several compete, as it happens in the
case w;;=(kik;)°, with 6<0, between the degree and the
weight of the connections of a node, the transport capability
of the network may suffer. For example, we measure
Qpnew=75(1) for networks of size N=10° and 6=1/2, while
Qpnew=0.014(1) if 5=-1/2.
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FIG. 5. (Color online) Relation between the intensity of the
correlations, estimated with p, and the change in the weight of the
superhighways for the positively correlated networks generated
with the + model of Eq. (2). The values of @ go from a=1 for the
first point on the left to @=2.4 in the middle changing regularly by
0.2 for each point. The last point of the right hand side is for «a
=20.

V. EMPIRICAL NETWORKS

Finally, we also consider a couple of real-world examples.
First the IMDB movie database with 383 640 actors that are
connected together whenever they have shared a common
movie [22,33]. This network is formed by the union of
cliques, which means that the number of links is high,
15038 083 in total. The weight of each link represents the
number of times a partnership has been repeated. Higher
values of the weight imply an increased probability of infor-
mation transfer between two individuals. The cumulative dis-
tribution of weights for this network can be seen in Fig. 6(a).
It shows a very wide functional form that can be well repre-
sented by a power law. The presence of weight correlations
in collaboration networks have been discussed using a differ-
ent technique in Ref. [34]. Here we will focus on the results
obtained with p, Qpoy, and Sgppey-

First of all, it is important to note that collaboration net-
works typically do not show a relation between the weight of
the links defined in this way, or as social closeness [10], and
the degree of the nodes [34]. Hence the weight correlations,
if they exist, are not a product of this type of relation. And
indeed they exist since the actor network presents a value of
p=0.268(1).

The measure of the superhighways in this case poses a
certain level of challenge. The actor collaboration network,
as many social networks, presents high clustering. The clus-
tering of a node i is defined as

2Si

k= 1)’ n

Cc;=

where s; is the number of connections between the neighbors
of i and k; stands for its degree. The average over all the
nodes of the network with the same degree k can be then
taken to obtain c¢(k), which is depicted in Fig. 6(b) for this
network. In the same plot, the curve 1/(k—1) is also in-
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FIG. 6. (Color online) (a) Cumulative weight distribution C,,
=[7dw P(w) for the IMDB actor collaboration network. (b) The
clustering as a function of the degree. The line below corresponds
to the function 1/(k—1).

cluded. The comparison is necessary because it has been
recently shown that the percolation threshold of a graph is
highly dependent on the clustering [31]. In fact, clustered
networks can be classified into two major groups: those with
weak and those with strong clustering. The difference be-
tween the two groups is whether c(k) decays as 1/(k—1)
(weak clustering) or in a slower way (strong clustering). The
actor network clearly falls into this latter group.

For weak clustered networks, it is possible to find a gen-
eralization of the percolation threshold condition mentioned
in the previous section ((k*)/(k)=2) [31]. However, as far as
we know, nothing similar has been proposed for strong clus-
tered graphs. Therefore, we will be forced to use a more
pedestrian technique to estimate the percolation threshold of
the actor collaboration network. In Fig. 7, the behavior of the
rate between the size of the giant component gcc and its
original value gcc is displayed as a function of the percent-
age of links severed g. A continuous transition can be ob-
served with this rate as the order parameter. Assuming the
functional form of the type gcc/gccy~ (g.—q)P, we find that
the critical point happens at a remotion rate of g,
~0.9990(3) (see the inset of Fig. 7). The point in which the
condition (k?)/{(k)=2 is fulfilled, for instance, lies in a
smaller value ¢=0.9976(1). Once ¢, has been measured, we
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FIG. 7. (Color online) Relative size of the giant component as a
function of the removal probability g for the actor collaboration
networks. In the inset, the same quantity but in log-log and vs g¢.
—q. Three values of g. are displayed: ¢.=0.9987 (triangles up),
4.=0.9990 (circles), and ¢,=0.9993 (triangles down).

can proceed as in the previous section, cutting a fraction g,
of links following an ordered sequence from lower to higher
values of the weight and comparing the results with those
obtained for a graph in which the weights of the links have
been reshuffled. The rates for the total weight of the super-
highways for a few values of g are gy, (¢=0.9976)
=3.2(1), Qphew(9=0.9987)=17(5), and Qe (q.=0.9990)
=106(30). As can be seen, finding the value of Qg Te-
quires a fine determination of ¢.. Even so, the high values of
this rate gives us a clear feeling of the importance that the
weight correlations have on the transport properties of these
real-world graphs. The values of S, that we find for
the same removal rates g are Sge(¢=0.9976)=0.62(2),
Sphew(@=0.9987)=3.2(1.5), and Sypew(g.=0.9990)=20(7),
respectively.

The second example is a network composed by 1278 U.S.
airports. A directed edge connects two airports whenever
there is a direct flight between them. The weight of the links
represents in this case the number of passengers on that itin-
erary during 2005 [35]. The cumulative weight distribution
of this network is displayed in Fig. 8. The weight distribution
is in this case also wide, although clearly it does not follow a
power-law decay. As can be seen in the inset of that figure,
the average weight of the outgoing links exhibits a depen-
dence on the out degree of the nodes, {(w;;) ~ (kikj)0'42. There-
fore it is not strange that the value of p that we measure, p
=0.983(1), denotes the presence of positive weight correla-
tions. Since the number of passengers in each direction can
be different, to calculate the superhighways it is necessary to
generalize the concept to directed graphs. This means to
study the incipient strongly connected component (SCC) in-
stead of the incipient percolation cluster. Applying the same
technique as the one illustrated in Fig. 7, we get a value for
the critical removal of ¢,=0.988(2). The corresponding rate
Qpnow 18 Qphew=2.61(7).
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FIG. 8. (Color online) In the main plot, the cumulative weight
distribution for the U.S. airport traffic network. The average weight
of the outgoing connections is displayed in the inset as a function of
the out degree.

VI. CONCLUSIONS

In summary, we have explored how correlations between
neighboring edge weights can occur in random networks.
The high (low) weights can appear concentrated in certain
areas of the graph, a configuration that has a considerable
effect on transport properties. To study this phenomenon, we
have proposed a simple method to introduce weight correla-
tions in otherwise uncorrelated graphs. These models show
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that weight correlations can appear independently of any
other property of the network, although they could be also
coupled to some characteristic of the vertices such as the
degree, hidden variables, etc. This method allow us to study,
not only qualitatively but also quantitatively, the type and
intensity of these correlations, leading us to test several esti-
mators: o,,, the generalized disparity and the range p, the
latter being the best of the three.

Once we found a tool to measure the intensity of weight
correlations, we have focused on how the transport proper-
ties of the network become affected by these correlations.
The so-called superhighways of our model + have been stud-
ied as a function of the intensity of weight correlations. The
conclusion, which seems to be generalizable to other net-
works, is that stronger (positive) correlations imply bigger
and weightier superhighways, improving thus the perfor-
mance of the network on transport in orders magnitude.

Finally, we have also considered data from two real-world
networks, a collaboration graph and a transportation (air-
ports) network. Both cases present positive weight-weight
correlations. The results on their superhighways ()., also
prove that weight correlations are, without doubt, an impor-
tant factor to take into account in the study of transport on
real networks.
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